login
A229198
Difference between integers nearest to (2^((n-3)/2) + 3^((n-3)/2)) (A229194) and Fibonacci numbers (A000045).
1
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 8, 19, 42, 89, 183, 366, 718, 1385, 2636, 4961, 9249, 17105, 31416, 57356, 104170, 188331, 339119, 608464, 1088286, 1940994, 3453084, 6129207, 10857097, 19196490, 33884792, 59721438, 105113418, 184774518, 324436647, 569068543, 997205614, 1745923072, 3054338540, 5339361915, 9327547185, 16284517131, 28414038840, 49551994304, 86372825386, 150486363173
OFFSET
0,11
COMMENTS
The following terms are Fibonacci numbers: a(9) = F(2), a(10)= F(4) , a(11) = F(6), a(14) = F(11); or the algebraic sum of two Fibonacci numbers: a(12) = F(8) - F(3), a(13) = F(10) - F(7), a(14) = F(12) - F(10); or the algebraic sum of three Fibonacci numbers: a(15) = F(12) + F(9) + F(5), a(16) = F(14) - F(6) - F(4), a(18) = F(16) + F(14) + F(8), a(19) = F(18) + F(10) - F(3).
LINKS
FORMULA
a(n) = A229194(n) - A000045(n)
MAPLE
with (combinat): seq(round(2^((n-3)/2)+3^((n-3)/2))-fibonacci(n), n=0..50);
CROSSREFS
Sequence in context: A074839 A262156 A002318 * A095681 A079583 A357291
KEYWORD
nonn
AUTHOR
Vladimir Pletser, Sep 15 2013
STATUS
approved