%I #39 Oct 16 2024 14:52:46
%S 0,1,2,3,4,5,6,7,8,9,71,145,167,264,361,757,1000,1439,1791,2233,3525,
%T 3627,3959,4096,4864,4995,6677,8000,8128,8672,9575,10648,14848,23488,
%U 24976,25199,25829,26549,27000,27224,35648,39304,43235,50653,53893,64000,74088,79507,91215,93285,94365
%N Numbers decremented by their digit product produce a cube.
%C 4 is the only zeroless number < 10^7 that is a member of this sequence and A229185 (Numbers incremented by their digit product produce a cube).
%e 167 - 1*6*7 = 125 = 5^3.
%t Select[Range[0,100000], IntegerQ[(# - Times @@ IntegerDigits[#])^(1/3)] &] (* _T. D. Noe_, Sep 16 2013 *)
%o (Python)
%o def DP(n):
%o p = 1
%o for i in str(n):
%o p *= int(i)
%o return p
%o for n in range(10**4):
%o k = 0
%o P = n - DP(n)
%o while P >= k**3:
%o if P == k**3:
%o print(n, end=', ')
%o break
%o k += 1
%o # Simplified by _Derek Orr_, Mar 12 2015
%o (PARI) for(n=0,10^5,d=digits(n);P=n-prod(i=1,#d,d[i]);if(ispower(P,3),print1(n,", "))) \\ _Derek Orr_, Mar 12 2015
%Y Cf. A007954, A228187.
%K nonn,easy,base
%O 1,3
%A _Derek Orr_, Sep 15 2013
%E More terms and prepended a(1) = 0 from _Derek Orr_, Mar 12 2015