login
A229184
Numbers decremented by their digit product produce a cube.
1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 71, 145, 167, 264, 361, 757, 1000, 1439, 1791, 2233, 3525, 3627, 3959, 4096, 4864, 4995, 6677, 8000, 8128, 8672, 9575, 10648, 14848, 23488, 24976, 25199, 25829, 26549, 27000, 27224, 35648, 39304, 43235, 50653, 53893, 64000, 74088, 79507, 91215, 93285, 94365
OFFSET
1,3
COMMENTS
4 is the only zeroless number < 10^7 that is a member of this sequence and A229185 (Numbers incremented by their digit product produce a cube).
EXAMPLE
167 - 1*6*7 = 125 = 5^3.
MATHEMATICA
Select[Range[0, 100000], IntegerQ[(# - Times @@ IntegerDigits[#])^(1/3)] &] (* T. D. Noe, Sep 16 2013 *)
PROG
(Python)
def DP(n):
p = 1
for i in str(n):
p *= int(i)
return p
for n in range(10**4):
k = 0
P = n - DP(n)
while P >= k**3:
if P == k**3:
print(n, end=', ')
break
k += 1
# Simplified by Derek Orr, Mar 12 2015
(PARI) for(n=0, 10^5, d=digits(n); P=n-prod(i=1, #d, d[i]); if(ispower(P, 3), print1(n, ", "))) \\ Derek Orr, Mar 12 2015
CROSSREFS
Sequence in context: A302499 A024662 A153670 * A331203 A302173 A348799
KEYWORD
nonn,easy,base
AUTHOR
Derek Orr, Sep 15 2013
EXTENSIONS
More terms and prepended a(1) = 0 from Derek Orr, Mar 12 2015
STATUS
approved