This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229176 Primes p with nonzero digits such that p + product_of_digits and p - product_of_digits are both prime. 1
 23, 29, 83, 293, 347, 349, 431, 439, 653, 659, 677, 743, 1123, 1297, 1423, 1489, 1523, 1657, 1867, 2239, 2377, 2459, 2467, 2543, 2579, 2663, 2753, 3163, 3253, 3271, 3329, 3457, 3461, 3581, 3691, 3727, 3833, 3947, 3967, 4129, 4253, 4297, 4423, 4567, 4957, 5323, 5381, 5651 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers with nonzero digits in A227217; the non-degenerate cases, so to speak. Intersection of primes with nonzero digits in A157677 and A225319. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 EXAMPLE 743 is prime. 743 - (7*4*3) = 659 is prime. 743 + (7*4*3) = 827 is prime. So, 743 is a member of this sequence. MAPLE A007954 := proc(n)     mul(d, d=convert(n, base, 10)) end proc: isA229176 := proc(n)     if isprime(n) and A007954(n) <> 0 then         isprime(n+A007954(n)) and isprime(n-A007954(n))  ;         simplify(%) ;     else         false;     end if; end proc: for n from 1 to 10000 do     if isA229176(n) then         printf("%d, ", n) ;     end if; end do: MATHEMATICA id[x_] := IntegerDigits[x]; ti[x_] := Times @@ id[x]; m=5000; Select[Range[3, m, 2], PrimeQ[#] && Min[id[#]] > 0 && PrimeQ[#+ti[#]] && PrimeQ[#-ti[#]]&] (* Zak Seidov, Oct 02 2013 *) PROG (Python) import sympy from sympy import isprime def DP(n): ..p = 1 ..for i in str(n): ....p *= int(i) ..return p {print(n, end=', ') for n in range(10**4) if DP(n) and isprime(n) and isprime(n+DP(n)) and isprime(n-DP(n))} # Simplified by Derek Orr, Mar 22 2015 (PARI) forprime(p=1, 10^4, d=digits(p); P=prod(i=1, #d, d[i]); if(P&&isprime(p+P)&&isprime(p-P), print1(p, ", "))) \\ Derek Orr, Mar 22 2015 CROSSREFS Cf. A227217, A157677, A225319. Sequence in context: A115396 A180538 A227217 * A232726 A029541 A068714 Adjacent sequences:  A229173 A229174 A229175 * A229177 A229178 A229179 KEYWORD nonn,base,easy AUTHOR Derek Orr, Sep 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 07:05 EDT 2019. Contains 328335 sequences. (Running on oeis4.)