This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229093 The clubs patterns appearing in n X n coins. 15

%I

%S 0,0,1,2,4,6,9,12,17,22,27,34,41,48,57,66,75,86,97,108,121,134,147,

%T 162,177,192,209,226,243,262,281,300,321,342,363,386,409,432,457,482,

%U 507,534,561,588,617,646,675,706,737,768,801,834,867,902,937,972,1009,1046

%N The clubs patterns appearing in n X n coins.

%C In the Japanese TV show "Tsuki no Koibito", the girl told her boyfriend that she saw a heart in 4 coins. Actually there are total 6 distinct patterns appearing in 2X2 coins which each pattern consist of a part of perimeter of each coin.

%C a(n) is the number of clubs patterns appearing in n X n coins. It is also A008810(n-1), except the third term. The inverse patterns (stars or voids between clubs) is A030511 (except the second term). See illustration in links.

%H Vincenzo Librandi, <a href="/A229093/b229093.txt">Table of n, a(n) for n = 0..1000</a>

%H Kival Ngaokrajang, <a href="/A229093/a229093_1.pdf">Illustration for initial terms</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).

%F a(n) = ceiling((n-1)^2/3), a(0) = 0, a(4) = 4.

%F G.f.: x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1) / ((x-1)^3*(x^2+x+1)). - _Colin Barker_, Oct 07 2013

%t CoefficientList[Series[(x^7 - 2 x^6 + x^5 - x^4 + x^3 - x^2 - 1)/((x - 1)^3 (x^2 + x + 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 08 2013 *)

%o (PARI) Vec(x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ _Colin Barker_, Oct 08 2013

%o (PARI) a(n) = ceil((n-1)^2/3) \\ _Charles R Greathouse IV_, Jan 06 2016

%Y Cf. A008810, A030511, A074148 (heart patterns).

%K nonn,easy

%O 0,4

%A _Kival Ngaokrajang_, Sep 13 2013

%E More terms from _Colin Barker_, Oct 08 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 16:08 EST 2019. Contains 329241 sequences. (Running on oeis4.)