login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229050 G.f.: Sum_{n>=0} (n^2)!/n!^n * x^n / (1-x)^(n^2+1). 7
1, 2, 9, 1714, 63079895, 623361815288736, 2670177752844538217570947, 7363615666255986180456959666126927684, 18165723931631174937747337664794705661513150850379149, 53130688706387570972824498004857476332107293478561950967662962585645710 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..26

FORMULA

a(n) = Sum_{k=0..n} Product_{j=0..k-1} binomial(n+j*k,k).

a(n) ~ exp(-1/12) * n^(n^2-n/2+1) / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, Sep 23 2013

EXAMPLE

G.f.: A(x) = 1 + 2*x + 9*x^2 + 1714*x^3 + 63079895*x^4 + 623361815288736*x^5 +...

where

A(x) = 1/(1-x) + x/(1-x)^2 + (4!/2!^2)*x^2/(1-x)^5 + (9!/3!^3)*x^3/(1-x)^10 + (16!/4!^4)*x^4/(1-x)^17 + (25!/5!^5)*x^5/(1-x)^26 +...

Equivalently,

A(x) = 1/(1-x) + x/(1-x)^2 + 6*x^2/(1-x)^5 + 1680*x^3/(1-x)^10 + 63063000*x^4/(1-x)^17 + 623360743125120*x^5/(1-x)^26 +...+ A034841(n)*x^n/(1-x)^(n^2+1) +...

Illustrate formula a(n) = Sum_{k=0..n} Product_{j=0..k-1} C(n+j*k,k) for initial terms:

a(0) = 1;

a(1) = 1 + C(1,1);

a(2) = 1 + C(2,1) + C(2,2)*C(4,2);

a(3) = 1 + C(3,1) + C(3,2)*C(5,2) + C(3,3)*C(6,3)*C(9,3);

a(4) = 1 + C(4,1) + C(4,2)*C(6,2) + C(4,3)*C(7,3)*C(10,3) + C(4,4)*C(8,4)*C(12,4)*C(16,4);

a(5) = 1 + C(5,1) + C(5,2)*C(7,2) + C(5,3)*C(8,3)*C(11,3) + C(5,4)*C(9,4)*C(13,4)*C(17,4) + C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5); ...

which numerically equals:

a(0) = 1;

a(1) = 1 + 1 = 2;

a(2) = 1 + 2 + 1*6 = 9;

a(3) = 1 + 3 + 3*10 + 1*20*84 = 1714;

a(4) = 1 + 4 + 6*15 + 4*35*120 + 1*70*495*1820 = 63079895;

a(5) = 1 + 5 + 10*21 + 10*56*165 + 5*126*715*2380 + 1*252*3003*15504*53130 = 623361815288736; ...

MAPLE

with(combinat):

a:= n-> add(multinomial(n+(k-1)*k, n-k, k$k), k=0..n):

seq(a(n), n=0..15);  # Alois P. Heinz, Sep 23 2013

MATHEMATICA

Table[Sum[Product[Binomial[n+j*k, k], {j, 0, k-1}], {k, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Sep 23 2013 *)

PROG

(PARI) {a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^m*x^m/(1-x+x*O(x^n))^(m^2+1)), n)}

for(n=0, 15, print1(a(n), ", "))

(PARI) {a(n)=sum(k=0, n, prod(j=0, k-1, binomial(n+j*k, k)))}

for(n=0, 15, print1(a(n), ", "))

CROSSREFS

Cf. A229051, A034841; A001850, A081798, A082488, A082489, A229049.

Sequence in context: A252584 A305851 A208207 * A221177 A181865 A271081

Adjacent sequences:  A229047 A229048 A229049 * A229051 A229052 A229053

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 19:47 EST 2020. Contains 331153 sequences. (Running on oeis4.)