OFFSET
1,1
COMMENTS
Table starts
.2...3.....4......5......6.......7.......8........9.......10.......11........12
.2...7....14.....23.....34......47......62.......79.......98......119.......142
.2..15....46....101....186.....307.....470......681......946.....1271......1662
.2..31...130....359....794....1527....2666.....4335.....6674.....9839.....14002
.2..57...332...1145...3002....6635...13040....23515....39698....63605.....97668
.2.105...830...3527..10860...27379...60180...119653...220318...381749....629586
.2.193..2054..10735..38768..111311..273124...597477..1197190..2238005...3954490
.2.353..5108..32907.139456..456029.1248872..3004839..6549040.13200731..24974126
.2.653.12790.101635.506236.1888383.5780144.15315095.36345246.79063593.160271154
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..925
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 13]
k=3: [order 27]
k=4: [order 46]
k=5: [order 69]
k=6: [order 95] for n>97
Empirical for row n:
n=1: a(n) = 1*n + 1
n=2: a(n) = 1*n^2 + 2*n - 1
n=3: a(n) = 1*n^3 + 3*n^2 - 3*n + 1
n=4: a(n) = (2/3)*n^4 + (10/3)*n^3 - (5/3)*n^2 + (2/3)*n - 1
n=5: [polynomial of degree 5]
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]
EXAMPLE
Some solutions for n=4 k=4
..1....1....0....3....4....1....2....3....2....3....3....1....1....0....2....2
..4....1....1....1....3....0....2....1....0....0....2....3....4....4....0....1
..0....1....3....3....3....2....0....1....4....2....2....4....1....1....3....3
..3....2....3....1....0....0....1....3....3....1....0....3....4....4....2....3
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 10 2013
STATUS
approved