Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #15 Dec 20 2020 07:34:49
%S 0,1,18,152,1110,8254,66050,578466,5557246,58381646,667481754,
%T 8262618730,110195259446,1576108225446,24075493095346,391282065519074,
%U 6742907753730030,122830141805635966,2358555332361509066,47617194132209848026,1008436738991020480294
%N Total sum of the 4th powers of lengths of ascending runs in all permutations of [n].
%H Alois P. Heinz, <a href="/A228994/b228994.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f.: (exp(x)*(12*x^2-12*x+14)-x-14)/(x-1)^2.
%F a(n) ~ n! * (14*exp(1)-15)*n. - _Vaclav Kotesovec_, Sep 12 2013
%p a:= proc(n) option remember; `if`(n<3, [0, 1, 18][n+1],
%p ((12*n^3-42*n^2+38*n+7)*a(n-1)-(n-1)*(6*n^3-12*n^2+n+14)*a(n-2)
%p +(n-1)*(n-2)*(6*n^2-12*n+7)*a(n-3))/(6*n^2-24*n+25))
%p end:
%p seq(a(n), n=0..30);
%t a[n_] := With[{k = 4}, Sum[If[n==t, 1, (n!/(t+1)!)(t(n-t+1)+1-((t+1)(n-t)+1)/(t+2))] t^k, {t, 1, n}]];
%t a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 20 2020, after _Alois P. Heinz_ in A229001 *)
%Y Column k=4 of A229001.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 10 2013