login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228932 Optimal ascending continued fraction expansion of sqrt(43) - 6. 4

%I

%S 2,9,30,60,122,-878,11429,35241,-177141,709582,-3123032,-1157723745,

%T 3237738813,-16178936725,33395053634,-71863018424,-153349368674,

%U -386763022623,-8021033029400,16314606875900,52522689388692

%N Optimal ascending continued fraction expansion of sqrt(43) - 6.

%C See A228929 for the definition of "optimal ascending continued fraction".

%C In A228931 it is shown that many numbers of the type sqrt(x) seem to present in their expansion a recurrence relation a(n) = a(n-1)^2 - 2 between the terms, starting from some point onward; 43 is the first natural number whose terms don't respect this relation.

%C The numbers in range 1 .. 200 that exhibit this behavior are 43, 44, 46, 53, 58, 61, 67, 73, 76, 85, 86, 89, 91, 94, 97, 103, 106, 108, 109, 113, 115, 116, 118, 125, 127, 129, 131, 134, 137, 139, 149, 151, 153, 154, 157, 159, 160, 161, 163, 166, 172, 173, 176, 177, 179, 181, 184, 186, 190, 191, 193, 199.

%C Nevertheless, the expansions of 3*sqrt(43), 9*sqrt(43), and sqrt(43)/5 satisfy the recurrence relation.

%D See A228931.

%H G. C. Greubel, <a href="/A228932/b228932.txt">Table of n, a(n) for n = 1..500</a>

%e sqrt(43) = 6 + 1/2*(1 + 1/9*(1 + 1/30*(1 + 1/60*(1 + 1/122*(1 - 1/878*(1 + ...)))))).

%p ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc

%p # List the first 8 terms of the expansion of sqrt(43)-6

%p ArticoExp(sqrt(43),20)

%t ArticoExp[x_, n_] := Round[1/#] & /@ NestList[Round[1/Abs[#]]*Abs[#] - 1 &, FractionalPart[x], n]; Block[{$MaxExtraPrecision = 50000},

%t ArticoExp[Sqrt[43] - 6, 20]] (* _G. C. Greubel_, Dec 26 2016 *)

%Y Cf. A010134, A010497, A228929, A228931.

%K sign,cofr

%O 1,1

%A _Giovanni Artico_, Sep 10 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 09:21 EST 2020. Contains 332133 sequences. (Running on oeis4.)