login
A228914
Positive integers N such that 1/N = p/q - q/p + r/s - s/r for some positive integers p,q,r,s.
1
4, 5, 9, 12, 15, 20, 21, 22, 24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 43, 44, 53, 55, 56, 58, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 74, 76, 77, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 115, 117, 122, 123, 129, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147
OFFSET
1,1
COMMENTS
Positive integer N belongs to this sequence if and only if the elliptic curve y^2 = x^3 + (8*N^2+1)*x^2 + 16*N^4*x has positive rank.
PROG
(PARI) { isA228914(n) = ellanalyticrank(ellinit([0, 8*n^2+1, 0, 16*n^4, 0]))[1]; } /* Max Alekseyev, Dec 30 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Bokk, Sep 13 2013
EXTENSIONS
More terms from Max Alekseyev, Sep 13 2013
STATUS
approved