This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228863 Series reversion of the g.f. of A228862. 2
 1, -1, 1, -2, 3, -4, 6, -10, 18, -35, 71, -147, 303, -616, 1244, -2508, 5067, -10296, 21097, -43624, 90929, -190629, 401053, -845374, 1784015, -3768964, 7973941, -16902610, 35909941, -76473042, 163227753, -349117291, 748032779, -1605215441, 3449280634, -7420879949, 15984045722 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The g.f. of A228862, F(x), satisfies: x = F(x - F(x^2 - F(x^3 - F(x^4 - F(x^5 -...)))). LINKS Paul D. Hanna, Table of n, a(n) for n = 1..300 FORMULA G.f.: A(x) = x - F(x^2 - F(x^3 - F(x^4 - F(x^5 -...))), where F(x) is the g.f. of A228862. EXAMPLE G.f.: A(x) = x - x^2 + x^3 - 2*x^4 + 3*x^5 - 4*x^6 + 6*x^7 - 10*x^8 + 18*x^9 +... where A(x - A(x)) = x^2 - x^3 + x^4 - x^5 + x^7 - x^8 + x^10 - x^11 + 3*x^13 +... A(x^2 - A(x - A(x))) = x^3 - x^4 + x^5 - x^6 + x^7 - 2*x^8 + 3*x^9 - 3*x^10 +... A(x^3 - A(x^2 - A(x - A(x)))) = x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^11 +... A(x^4 - A(x^3 - A(x^2 - A(x - A(x))))) = x^5 - x^6 + x^7 - x^8 + x^9 - x^10 +... ... The series reversion of A(x) is the g.f. of A228862, which begins: F(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 24*x^7 + 58*x^8 + 146*x^9 +... PROG (PARI) {a(n)=local(A=x+x^2, G=x^(n+1)); for(i=1, n+1, A=serreverse(x-G+x^2*O(x^n)); G=x^(n+1); for(k=0, n-1, G=subst(A, x, x^(n-k+1)-G+x^2*O(x^n)))); polcoeff(serreverse(A), n)} for(n=1, 40, print1(a(n), ", ")) CROSSREFS Sequence in context: A024490 A317200 A056469 * A004047 A093912 A181054 Adjacent sequences:  A228860 A228861 A228862 * A228864 A228865 A228866 KEYWORD sign AUTHOR Paul D. Hanna, Sep 05 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 11:23 EDT 2019. Contains 328056 sequences. (Running on oeis4.)