OFFSET
0,1
COMMENTS
Bhadouria et al. call this the 4-binomial transform of the 4-Lucas sequence.
Binomial transform of the binomial transform of the binomial transform of A087215.
LINKS
Colin Barker, Table of n, a(n) for n = 0..750
P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence T_4.
Index entries for linear recurrences with constant coefficients, signature (24,-64).
FORMULA
G.f.: 2*( 1-12*x ) / ( 1-24*x+64*x^2 ).
a(n) = 2*A098647(n).
From Colin Barker, Sep 23 2017: (Start)
a(n) = 24*a(n-1) - 64*a(n-2) for n>1.
a(n) = (12-4*sqrt(5))^n + (4*(3+sqrt(5)))^n.
(End)
MATHEMATICA
LinearRecurrence[{24, -64}, {2, 24}, 20] (* Harvey P. Dale, Jul 04 2022 *)
PROG
(PARI) Vec(2*(1 - 12*x) / (1 - 24*x + 64*x^2 ) + O(x^30)) \\ Colin Barker, Sep 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 10 2013
STATUS
approved