Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #19 Mar 06 2020 13:45:27
%S 2,15,171,2160,27783,358425,4626234,59716035,770832207,9950150160,
%T 128439782811,1657942687845,21401266181778,276254540154855,
%U 3565983915414819,46030886147041200,594181726489417887,7669891971371155905,99005472955353055626
%N a(n) = 3^n*A228569(n).
%C Bhadouria et al. call this the 3-binomial transform of the 3-Lucas sequence.
%H P. Bhadouria, D. Jhala, B. Singh, <a href="http://dx.doi.org/10.22436/jmcs.08.01.07">Binomial Transforms of the k-Lucas Sequences and its Properties</a>, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence T_3.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (15,-27).
%F G.f.: ( 2-15*x ) / ( 1-15*x+27*x^2 ).
%F Binomial transform of the binomial transform of A057076.
%t LinearRecurrence[{15,-27},{2,15},30] (* _Harvey P. Dale_, May 20 2018 *)
%K easy,nonn
%O 0,1
%A _R. J. Mathar_, Nov 10 2013