login
A228836
Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.
7
1, 1, 1, 1, 4, 1, 1, 36, 36, 1, 1, 560, 1820, 560, 1, 1, 12650, 177100, 177100, 12650, 1, 1, 376992, 30260340, 94143280, 30260340, 376992, 1, 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1, 1, 621216192, 3284214703056, 159518999862720, 488526937079580
OFFSET
0,5
EXAMPLE
The triangle of coefficients C(n^2, (n-k)*k), n>=k, k=0..n, begins:
1;
1, 1;
1, 4, 1;
1, 36, 36, 1;
1, 560, 1820, 560, 1;
1, 12650, 177100, 177100, 12650, 1;
1, 376992, 30260340, 94143280, 30260340, 376992, 1;
1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1;
1, 621216192, 3284214703056, 159518999862720, 488526937079580, 159518999862720, 3284214703056, 621216192, 1; ...
PROG
(PARI) {T(n, k)=binomial(n^2, (n-k)*k)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A207136 (row sums), A228837 (antidiagonal sums), A070780 (column 1).
Cf. related triangles: A228900(exp), A209330, A226234, A228832.
Sequence in context: A177939 A209196 A158390 * A176419 A299471 A102602
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 05 2013
STATUS
approved