login
A228765
The curvature of circles (rounded to nearest integer), successively inscribed toward the 45-degree angle of a 45-45-90 triangle, starting with a unit circle.
1
1, 2, 5, 11, 25, 56, 126, 283, 633, 1419, 3178, 7118, 15943, 35710, 79985, 179152, 401270, 898777, 2013107, 4509015, 10099422, 22620977, 50667115, 113485664, 254188460, 569338636, 1275221080, 2856276912
OFFSET
0,2
COMMENTS
The curvature expansion factors are 2.239828809...(1/0.44636269217...) and 5.828427125...(1/0.17157287525...) or 1 / (3 - 2*sqrt(2)) for circles successively inscribed toward the 45- and 90-degree angles respectively. The ratio 1 / (3 - 2*sqrt(2)) is also 3 + 2*sqrt(2) or A156035 as commented by Michel Marcus. This is also (n+1) + sqrt(A005563(n)) or 1 / ((n+1) - sqrt(A005563(n))), for n = 2.
The curvature of circles (rounded to nearest integer) successively inscribed toward the 90-degree angle is A003499. (except the first term). See illustration in links.
FORMULA
a(n+1) = round(k^n), with k = 7 - 4 sqrt(2) + 2 sqrt(20 - 14 sqrt(2)) = 2.23982.... - Charles R Greathouse IV, Sep 05 2013
PROG
(Small Basic)
x[0] = 1
zeta = (90-45/2)/2
c1 = 2*math.Tan(zeta*math.Pi/180)
a0 = (1 + Math.SquareRoot(2))/Math.Sin(45*math.pi/180)
a1 = a0 - (1 + c1/2)
b1 = a1
s1 = (a1 + b1 + c1)/2
r1 = Math.SquareRoot((s1-a1)*(s1-b1)*(s1-c1)/s1)
For n = 0 To 40
x[n+1] = x[n] * r1
TextWindow.Write(math.Round(1/x[n]) + ", ")
EndFor
(PARI) a(n)=my(k=7-sqrt(32)+sqrt(80-56*sqrt(2))); round(k^(n-1)) \\ Charles R Greathouse IV, Sep 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Sep 03 2013
STATUS
approved