OFFSET
1,1
COMMENTS
See A228461 for more information about the definition. - N. J. A. Sloane, Sep 02 2013
Table starts
...2....3.....4......5.......6.......7........8........9.......10........11
...4....9....16.....25......36......49.......64.......81......100.......121
...8...27....64....125.....216.....343......512......729.....1000......1331
..16...77...232....545....1096....1981.....3312.....5217.....7840.....11341
..28..185...696...1943....4504....9191....17088....29589....48436.....75757
..50..447..2072...6797...17986...41083....84288...159321...282274....474551
..88.1071..6130..23627...71278..181885...410828...845517..1617004...2913955
.156.2593.18378..83391..287154..819099..2037214..4564455..9418762..18182967
.278.6333.55716.298239.1174282.3749921.10282648.25107493.55950398.115793733
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..811
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-3) +a(n-5)
k=2: [order 14]
k=3: [order 26]
k=4: [order 43]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = (2/3)*n^4 + 4*n^3 + (19/3)*n^2 + 4*n + 1
n=5: [polynomial of degree 5]
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]
EXAMPLE
Some solutions for n=4 k=4
..1..4..3..2..0..4..2..2..4..1..2..0..0..0..2..1
..2..0..2..0..0..3..3..4..2..2..2..1..2..2..3..4
..1..3..0..0..0..1..0..1..3..1..0..0..2..3..4..4
..3..1..2..1..4..1..1..4..1..2..4..0..2..2..3..3
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Sep 01 2013
STATUS
approved