%I #14 Sep 02 2013 13:03:34
%S 5,25,125,545,1943,6797,23627,83391,298239,1073743,3873051,13959617,
%T 50261845,180829983,650385801,2339156205,8413500735,30263904639,
%U 108865370619,391615337877,1408733302733,5067520822187,18228904185829
%N Number of arrays of the median of three adjacent elements of some length-(n+2) 0..4 array.
%H R. H. Hardin, <a href="/A228736/b228736.txt">Table of n, a(n) for n = 1..114</a>
%F Empirical: a(n) = 5*a(n-1) -4*a(n-2) -10*a(n-3) +16*a(n-4) +34*a(n-5) -46*a(n-6) +18*a(n-7) +15*a(n-8) +8*a(n-9) +129*a(n-10) +8*a(n-11) -283*a(n-12) -285*a(n-13) +291*a(n-14) +129*a(n-15) -281*a(n-16) -492*a(n-17) +132*a(n-18) +913*a(n-19) +760*a(n-20) +57*a(n-21) -727*a(n-22) -370*a(n-23) +74*a(n-24) +38*a(n-25) -59*a(n-26) -628*a(n-27) -241*a(n-28) +448*a(n-29) +443*a(n-30) +391*a(n-31) -32*a(n-32) -342*a(n-33) -158*a(n-34) -36*a(n-35) +40*a(n-36) +75*a(n-37) +13*a(n-38) -8*a(n-39) -4*a(n-40) -5*a(n-41) +a(n-43)
%e Some solutions for n=4
%e ..3..2..2..4..3..2..1..4..1..0..0..2..2..1..4..3
%e ..3..3..2..0..4..1..3..3..2..4..4..4..3..2..4..1
%e ..3..2..0..2..0..3..3..4..0..4..4..3..0..0..4..3
%e ..2..0..3..0..1..3..3..3..1..4..0..4..4..2..4..3
%Y Column 4 of A228740.
%K nonn
%O 1,1
%A _R. H. Hardin_ Sep 01 2013