

A228649


Numbers n such that n1, n and n+1 are all squarefree.


4



2, 6, 14, 22, 30, 34, 38, 42, 58, 66, 70, 78, 86, 94, 102, 106, 110, 114, 130, 138, 142, 158, 166, 178, 182, 186, 194, 202, 210, 214, 218, 222, 230, 238, 254, 258, 266, 282, 286, 302, 310, 318, 322, 330, 346, 354, 358, 366, 382, 390, 394, 398, 402, 410, 418, 430, 434, 438, 446, 454, 462, 466, 470, 482, 498
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalently, a positive integer n is comfortably squarefree if and only if n^3  n is squarefree. The 'if' direction is obvious from the factorization n(n1)(n+1), and the converse follows from the coprimality of n, n  1 and n + 1.
The asymptotic density of comfortably squarefree numbers is the product over all primes of 1  3/p^2, which is A206256 = 0.125486980905....
See also comments in A007675.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000
A. P. Goucher, Comfortably squarefree numbers, Complex Projective 4Space.
Ewan Delanoy, Are there infinitely many triples of consecutive squarefree integers?, Math Overflow.


FORMULA

a(n) = A007675(n) + 1.  Giovanni Resta, Aug 29 2013


MAPLE

with(numtheory):
a := n > `if`(issqrfree(n1) and issqrfree(n) and issqrfree(n+1), n, NULL);
seq(a(n), n = 1..500); # Peter Luschny, Jan 18 2014


MATHEMATICA

Select[Range[500], (SquareFreeQ[#  1] && SquareFreeQ[#] && SquareFreeQ[# + 1]) &] (* Adam P. Goucher *)
Select[Range[2, 500, 2], (MoebiusMu[#  1] MoebiusMu[#] MoebiusMu[# + 1]) != 0 &] (* Alonso del Arte, Jan 16 2014 *)
Flatten[Position[Partition[Boole[SquareFreeQ/@Range[500]], 3, 1], {1, 1, 1}]]+1 (* Harvey P. Dale, Jan 14 2015 *)
SequencePosition[Table[If[SquareFreeQ[n], 1, 0], {n, 500}], {1, 1, 1}][[All, 1]]+1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 02 2018 *)


PROG

(PARI) is(n)=issquarefree(n1)&&issquarefree(n)&&issquarefree(n+1) \\ Charles R Greathouse IV, Aug 29 2013


CROSSREFS

Sequence in context: A101572 A080766 A262506 * A268641 A162796 A172304
Adjacent sequences: A228646 A228647 A228648 * A228650 A228651 A228652


KEYWORD

easy,nonn


AUTHOR

Adam P. Goucher, Aug 29 2013


STATUS

approved



