login
A228616
Determinant of the n X n matrix with (i,j)-entry equal to 1 or 0 according as 2*(i + j) - 1 is prime or not.
9
1, 0, -1, -2, 0, 0, 0, -2, 3, 11, 24, -60, -16, 31, -217, -1148, -164, 132, 395, 697, -191, -76, 125664, -213885, -171654, 114902, 353497, -388325, -1738118, -222898, 248633, 382075, -1637075, 21100, 4049068, -189147708, -279083383, 472023163, -19063401, -6718578823
OFFSET
1,4
COMMENTS
Conjecture: a(n) is nonzero for any n > 7.
Clearly this conjecture implies that there are infinitely many primes.
LINKS
EXAMPLE
a(1) = 1 since 2*(1 + 1) - 1 = 3 is a prime.
MATHEMATICA
a[n_]:=a[n]=Det[Table[If[PrimeQ[2(i+j)-1], 1, 0], {i, 1, n}, {j, 1, n}]]
Table[a[n], {n, 1, 40}]
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Aug 27 2013
STATUS
approved