login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228608
E.g.f. A(x) satisfies: A'(x) = A(x)^2 + A(x)^4.
2
1, 2, 12, 128, 1968, 39488, 977088, 28742912, 979744512, 37968868352, 1648597834752, 79272057049088, 4181485522464768, 240067201819885568, 14902137637759008768, 994529776192394166272, 71009035425186633940992, 5401058272888913168433152, 435991257271370763778916352
OFFSET
0,2
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) A(x) = exp( Integral A(x) + A(x)^3 dx ) with A(0)=1.
(2) A(x) = (1 + B(x))/(1 - B(x)) where B(x) = tan(1-x - 1/A(x)).
(3) log(A(x)) = Series_Reversion( 1-exp(-x) - atan(tanh(x/2)) ).
(4) A( 1-exp(-x) - atan(tanh(x/2)) ) = exp(x).
a(n) ~ n! / (GAMMA(1/3) * 3^(1/3) * n^(2/3) * (1-Pi/4)^(n+1/3)). - Vaclav Kotesovec, Jan 26 2014
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 128*x^3/3! + 1968*x^4/4! + 39488*x^5/5! +...
Related expansions.
A(x)^2 = 1 + 4*x + 32*x^2/2! + 400*x^3/3! + 6848*x^4/4! + 149056*x^5/5! +...
A(x)^4 = 1 + 8*x + 96*x^2/2! + 1568*x^3/3! + 32640*x^4/4! + 828032*x^5/5! +...
The logarithm of e.g.f. A(x) begins:
log(A(x)) = 2*x + 8*x^2/2! + 72*x^3/3! + 992*x^4/4! + 18336*x^5/5! +...
and equals Integral A(x) + A(x)^3 dx, where
A(x)^3 = 1 + 6*x + 60*x^2/2! + 864*x^3/3! + 16368*x^4/4! + 385344*x^5/5! +...
MATHEMATICA
CoefficientList[Exp[InverseSeries[Series[1-Exp[-x]-ArcTan[Tanh[x/2]], {x, 0, 20}], x]], x]*Range[0, 20]! (* Vaclav Kotesovec, Dec 20 2013 *)
PROG
(PARI) /* Explicit formula: */
{a(n)=local(A, X=x+x^2*O(x^n)); A=exp(serreverse(1-exp(-X) - atan(tanh(X/2)))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* By definition: A'(x) = A(x)^2 + A(x)^4: */
{a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A^2+A^4+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* From: A(x) = exp( Integral A(x) + A(x)^3 dx ): */
{a(n)=local(A=1+x); for(i=1, n, A=exp(intformal(A+A^3)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A227461 A367374 A367853 * A097629 A259267 A014235
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 18 2013
STATUS
approved