Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 01 2019 18:29:02
%S 1,18,299,4982,83001,1382818,23038099,383820582,6394548401,
%T 106534800818,1774896845499,29570232336982,492647582692201,
%U 8207633878782018,136741265470126499,2278144220188626182,37954461443189410401,632330969513105454418,10534794588084770785099
%N The Merrifield-Simmons index of the meta-polyphenylene chain of length n.
%C The Merrifield-Simmons index of a graph is the number of its independent vertex subsets.
%D R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
%H T. Doslic, M. S. Litz, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match67/n2/match67n2_313-330.pdf">Matchings and independent sets in polyphenylene chains</a>, MATCH, Commun. Math. Comput. Chem., 67, 2012, 313-330.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16,11).
%F a(n) = (((2+sqrt(3))*(8+5*sqrt(3))^n - (2-sqrt(3))*(8-5*sqrt(3))^n)*(1/2))/sqrt(3).
%F G.f.: (1+2*x)/(1-16*x -11*x^2).
%p gser := series((2*x+1)/(1-16*x-11*x^2), x = 0, 22): seq(coeff(gser, x, n), n = 0 .. 20);
%Y Cf. A228604, A228606.
%K nonn,easy
%O 0,2
%A _Emeric Deutsch_, Nov 23 2013