login
x-values in the solution to the Pell equation x^2 - 106*y^2 = -1.
2

%I #14 Apr 05 2018 18:04:39

%S 4005,256961212515,16486657605006072525,1057785633576265066862185035,

%T 67867634144387774982257006782401045,

%U 4354394329202601312629024169108475989921555,279378384309860411015977934462690086320911158397565

%N x-values in the solution to the Pell equation x^2 - 106*y^2 = -1.

%C All terms are multiples of 4005.

%H Colin Barker, <a href="/A228579/b228579.txt">Table of n, a(n) for n = 1..120</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (64160102,-1).

%F a(n) = 64160102*a(n-1)-a(n-2).

%F G.f.: 4005*x*(x+1) / (x^2-64160102*x+1).

%t LinearRecurrence[{64160102,-1},{4005,256961212515},20] (* _Harvey P. Dale_, Apr 05 2018 *)

%o (PARI) Vec(4005*x*(x+1)/(x^2-64160102*x+1) + O(x^30))

%Y Cf. A228580 gives the corresponding y-values.

%K nonn,easy

%O 1,1

%A _Colin Barker_, Aug 26 2013