%I #22 Aug 27 2021 02:27:23
%S 2,5,19,80,343,1475,6346,27305,117487,505520,2175139,9359135,40270258,
%T 173273885,745558651,3207971600,13803182047,59391995435,255550431034,
%U 1099576168865,4731229551223,20357419249520,87593407593931,376894780221095,1621693678323682
%N Binomial transform of A006497.
%H Michael De Vlieger, <a href="/A228569/b228569.txt">Table of n, a(n) for n = 0..1577</a>
%H P. Bhadouria, D. Jhala and B. Singh, <a href="http://dx.doi.org/10.22436/jmcs.08.01.07">Binomial Transforms of the k-Lucas Sequences and its Properties</a>, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence B_3.
%H Takao Komatsu, <a href="https://arxiv.org/abs/2105.08277">Asymmetric Circular Graph with Hosoya Index and Negative Continued Fractions</a>, arXiv:2105.08277 [math.CO], 2021.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3).
%F G.f.: ( 2-5*x ) / ( 1-5*x+3*x^2 ).
%F a(n) = 2*A116415(n)-5*A116315(n-1) for n>0.
%t LinearRecurrence[{5,-3},{2,5},30] (* _Harvey P. Dale_, Sep 09 2017 *)
%K easy,nonn
%O 0,1
%A _R. J. Mathar_, Nov 10 2013