%I #25 Jan 22 2020 16:27:39
%S 1,1,2,12,146,2820,79682,3109932,163268786,11373086100,1049057429762,
%T 128748967088412,21220651011079346,4747770003765805380,
%U 1456585782002699624642,6390825031791150383749864
%N Number of connected labeled graded posets on n vertices.
%C Here 'graded' is to be intended as in A001833.
%H David A. Klarner, <a href="https://doi.org/10.1016/S0021-9800(69)80100-6">The number of graded partially ordered sets</a>, Journal of Combinatorial Theory, vol.6, no.1, pp.12-19, (January-1969).
%F E.g.f.: 1 + log(F(x)), where F(x) is the e.g.f. of A001833.
%Y Cf. A001833.
%K nonn
%O 0,3
%A _Daniele P. Morelli_, Aug 25 2013