login
Determinant of the n X n matrix with (i,j)-entry equal to A008683(i+j-1) for all i,j = 1..n.
5

%I #18 Apr 14 2023 10:53:59

%S 1,-2,3,3,-7,-5,12,-19,-52,-52,-20,73,-919,6209,2206,-1869,-8835,

%T -4021,23202,-122489,-174347,1106682,1114088,388318,-7528057,55753005,

%U 81020413,-530178192,-6348221604,101952770365,-371734984964,-16091176203501,90823940064758,163339092651834,-3480231557696967

%N Determinant of the n X n matrix with (i,j)-entry equal to A008683(i+j-1) for all i,j = 1..n.

%C Conjecture: a(n) is always nonzero. Moreover, |a(n)|^(1/n) tends to infinity.

%C We have verified that a(n) is nonzero for all n = 1..500.

%H Zhi-Wei Sun, <a href="/A228548/b228548.txt">Table of n, a(n) for n = 1..200</a>

%e a(1) = 1 since Moebius(1+1-1) = 1.

%t a[n_]:=a[n]=Det[Table[MoebiusMu[i+j-1],{i,1,n},{j,1,n}]]

%t Table[a[n],{n,1,10}]

%o (PARI) a(n) = matdet(matrix(n, n, i, j, moebius(i+j-1))); \\ _Michel Marcus_, Apr 14 2023

%Y Cf. A008683, A228549, A069191, A228552.

%K sign

%O 1,2

%A _Zhi-Wei Sun_, Aug 25 2013