login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228527 Triangle read by rows: T(n,k) is the sum of all parts of size k of the n-th section of the set of compositions ( ordered partitions) of any integer >= n. 2
1, 1, 2, 3, 2, 3, 7, 6, 3, 4, 16, 14, 9, 4, 5, 36, 32, 21, 12, 5, 6, 80, 72, 48, 28, 15, 6, 7, 176, 160, 108, 64, 35, 18, 7, 8, 384, 352, 240, 144, 80, 42, 21, 8, 9, 832, 768, 528, 320, 180, 96, 49, 24, 9, 10, 1792, 1664, 1152, 704, 400, 216, 112, 56, 27, 10, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

In other words, T(n,k) is the sum of all parts of size k of the last section of the set of compositions (ordered partitions) of n.

For the definition of "section of the set of compositions" see A228524.

The equivalent sequence for partitions is A207383.

LINKS

Table of n, a(n) for n=1..66.

FORMULA

T(n,k) = k*A045891(n-k) = k*A228524(n,k), n>=1, 1<=k<=n.

EXAMPLE

Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4:

.

.            1      2        3          4

.            _      _        _          _

.           |_|   _| |      | |        | |

.                |_ _|   _ _| |        | |

.                       |_|   |        | |

.                       |_ _ _|   _ _ _| |

.                                |_| |   |

.                                |_ _|   |

.                                |_|     |

.                                |_ _ _ _|

.

For n = 4 and k = 2, T(4,2) = 6 because there are 3 parts of size 2 in the last section of the set of compositions of 4, so T(4,2) = 3*2 = 6, see below:

--------------------------------------------------------

.                         The last section      Sum of

.   Composition of 4        of the set of      parts of

.                         compositions of 4     size k

. --------------------   -------------------

.            Diagram             Diagram    k = 1 2 3 4

. ------------------------------------------------------

.            _ _ _ _                    _

.  1+1+1+1  |_| | | |         1        | |      1 0 0 0

.    2+1+1  |_ _| | |         1        | |      1 0 0 0

.    1+2+1  |_|   | |         1        | |      1 0 0 0

.      3+1  |_ _ _| |         1   _ _ _| |      1 0 0 0

.    1+1+2  |_| |   |     1+1+2  |_| |   |      2 2 0 0

.      2+2  |_ _|   |       2+2  |_ _|   |      0 4 0 0

.      1+3  |_|     |       1+3  |_|     |      1 0 3 0

.        4  |_ _ _ _|         4  |_ _ _ _|      0 0 0 4

.                                              ---------

.                      Column sums give row 4:  7,6,3,4

.

Triangle begins:

1;

1,       2;

3,       2,    3;

7,       6,    3,   4;

16,     14,    9,   4,   5;

36,     32,   21,  12,   5,   6;

80,     72,   48,  28,  15,   6,   7;

176,   160,  108,  64,  35,  18,   7,  8;

384,   352,  240, 144,  80,  42,  21,  8,  9;

832,   768,  528, 320, 180,  96,  49, 24,  9, 10;

1792, 1664, 1152, 704, 400, 216, 112, 56, 27, 10, 11;

...

CROSSREFS

Column 1 is A045891. Row sums give A001792.

Cf. A011782, A135010, A207383, A221876, A228350, A228366, A228370, A228524, A228526.

Sequence in context: A038063 A264506 A085204 * A055375 A091533 A055376

Adjacent sequences:  A228524 A228525 A228526 * A228528 A228529 A228530

KEYWORD

nonn,tabl

AUTHOR

Omar E. Pol, Sep 01 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 20:38 EDT 2019. Contains 321477 sequences. (Running on oeis4.)