login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228513
a(n) = Sum_{k=0..n} 2^k*(n!/k!)^2.
1
1, 3, 16, 152, 2448, 61232, 2204416, 108016512, 6913057024, 559957619456, 55995761946624, 6775487195543552, 975670156158275584, 164888256390748581888, 32318098252586722066432, 7271572106832012464979968, 1861522459348995191034937344, 537979990751859610209097023488
OFFSET
0,2
COMMENTS
Generally, Sum_{k=0..n} x^k*(n!/k!)^2 is asymptotic to BesselI(0,2*sqrt(x))*(n!)^2
FORMULA
a(n) = (n^2+2)*a(n-1) - 2*(n-1)^2*a(n-2).
a(n) ~ 2*Pi*BesselI(0,2*sqrt(2)) * n^(2*n+1)/exp(2*n).
MATHEMATICA
Table[(n!)^2*Sum[2^j/(j!)^2, {j, 0, n}], {n, 0, 20}]
Total/@Table[2^k (n!/k!)^2, {n, 0, 20}, {k, 0, n}] (* Harvey P. Dale, Jun 10 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Aug 24 2013
STATUS
approved