login
A228444
Primes expressible as concatenation of phi(sigma(n)) and sigma(phi(n)).
1
11, 23, 43, 67, 127, 631, 839, 3631, 1831, 4831, 3691, 6491, 108127, 80363, 108127, 336403, 132961, 288403, 144961, 504403, 384403, 192961, 384403, 384403, 384403, 432511, 864511, 384961, 432961, 640847, 864511, 640847, 720961, 5441651, 7681651, 8641651, 8641651
OFFSET
1,1
LINKS
EXAMPLE
a(6)= 631: phi(sigma(17))= 6. sigma(phi(17))= 31. After concatenating gives 631 which is prime.
a(9)= 1831: phi(sigma(34))= 18. sigma(phi(34))= 31. After concatenating gives 1831 which is prime.
MAPLE
with(numtheory): with(StringTools): KD:= proc() local a; a:= parse(cat(phi(sigma(n)), sigma(phi(n)))); if isprime(a) then return (a) : fi; end: seq(KD(), n=1..10000);
MATHEMATICA
ccpr[n_]:=Module[{a=EulerPhi[DivisorSigma[1, n]], b= DivisorSigma[1, EulerPhi[n]]}, FromDigits[Join[IntegerDigits[a], IntegerDigits[b]]]]; Select[Array[ccpr, 3000], PrimeQ] (* Harvey P. Dale, Apr 18 2014 *)
CROSSREFS
Cf. A062401 (phi(sigma(n))).
Cf. A062402 (sigma(phi(n))).
Sequence in context: A357364 A199848 A352494 * A191235 A146451 A195043
KEYWORD
nonn,base,less
AUTHOR
K. D. Bajpai, Nov 03 2013
STATUS
approved