login
A228435
Integer areas of the mixtilinear triangles of integer-sided triangles.
0
6, 14, 24, 54, 56, 84, 96, 112, 124, 126, 130, 150, 154, 156, 210, 216, 224, 266, 294, 336, 342, 344, 350, 366, 384, 436, 448, 456, 486, 496, 504, 520, 531, 546, 570, 600, 616, 624, 630, 660, 686, 726, 756, 814, 840, 864, 896, 924, 1008, 1014, 1064, 1116, 1134
OFFSET
1,1
COMMENTS
The mixtilinear triangle is the triangle connecting the centers of the mixtilinear incircles.
A circle that in internally tangent to two sides of a triangle and to the circumcircle is called a mixtilinear incircle. There are three mixtilinear incircles, one corresponding to each angle of the triangle.
The area of the mixtilinear triangle is given by
A' = A*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 6*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)/(a + b + c)^3
where A is the area of the reference triangle of sides (a, b, c).
See the link for the side lengths of the mixtilinear triangles.
Properties of this sequence:
The primitive mixtilinear triangles are 6, 14, 84, 112, 124, 130, ...
The nonprimitive triangles of areas 4*a(n), 9*a(n), ..., p^2*a(n), ... are in the sequence.
It appears that if the triangles are isosceles, one of the sides of the mixtilinear triangles is integer, for example, for the triangles of areas a(n) = 112, 342, 448, 1008, 1368, 1792, 2800, 3078, 4032, 5472, ... corresponding to a triangle with an integer side of values respectively 8, 24, 16, 24, 48, 32, 40, 72, 48, 96, ...
The following table gives the first values (A', A, a, b, c, a', b', c') where A' is the area of the mixtilinear triangles, A is the area of the initial triangles, a, b, c are the integer sides of the initial triangles, and a', b', c' are the sides of the mixtilinear triangles.
-------------------------------------------------------------------------------
A' | A| a| b| c| a' | b' | c'
-------------------------------------------------------------------------------
6 | 54| 9|12| 15| 9*sqrt(5)/4 | 4*sqrt(13)/3 | 5*sqrt(37)/12
14 | 126|15|28| 41|135*sqrt(1717)/196 |28*sqrt(757)/27 | 41*sqrt(16045)/5292
24 | 216|18|24| 30| 9*sqrt(5)/2 | 8*sqrt(13)/3 | 5*sqrt(37)/6
56 | 504|30|56| 82|135*sqrt(1717)/98 |56*sqrt(757)/27 | 41*sqrt(16045)/2646
84 | 756|39|42| 45|104*sqrt(445)/147 | 7*sqrt(37)/3 | 45*sqrt(197)/49
96 | 864|36|48| 60| 9*sqrt(5) |16*sqrt(13)/3 | 5*sqrt(37)/3
112| 972|45|45| 72| 20*sqrt(2) |20*sqrt(2) | 8
124|1116|39|62| 85|351*sqrt(8605)/961 |31*sqrt(853)/27 |680*sqrt(79957)/25947
126|1134|45|84|123|405*sqrt(1717)/196 |28*sqrt(757)/9 | 41*sqrt(16045)/1764
...............................................................................
EXAMPLE
6 is in the sequence. We use two ways:
First way: from the initial triangle (9, 12, 15) the formula given in the comments gives directly the area of the mixtilinear triangle: A' = 54*(9^3 - 9^2*12 - 9*12^2 + 12^3 - 9^2*15 + 6*9*12*15 - 12^2*15 - 9*15^2 - 12*15^2 + 15^3)/(9 + 12 + 15)^3 = 6, where the area of the initial triangle A = 54 is obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(18*(18-9)*(18-12)*(18-15)) = sqrt(2916) = 54, where s=18 is the semiperimeter.
Second way: by calculation of the sides a', b', c' and by use of Heron's formula. With the formulas given in the link, we find
a’ = 9*sqrt(5)/4;
b’ = 4*sqrt(13)/3;
c’ = 5*sqrt(37)/12.
Now, we use Heron's formula with (a',b',c'). We find A' = sqrt(s1*(s1-a')*(s1-b')*(s1-c')) with:
s1 = (a' + b' + c')/2 = (9*sqrt(5)/4 + 4*sqrt(13)/3 + 5*sqrt(37)/12)/2.
We find A' = 6.
MATHEMATICA
nn = 500; lst = {}; Do[s = (a + b + c)/2; t = a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 6*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2] * t/(a + b + c)^3], AppendTo[lst, Sqrt[area2] * t/(a + b + c)^3]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
CROSSREFS
Cf. A188158.
Sequence in context: A104675 A028557 A083657 * A317333 A010740 A185594
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 10 2013
STATUS
approved