login
A228406
Sequences from the quartic oscillator.
1
0, 24, 384, 2064, 7104, 18984, 43008, 86688, 160128, 276408, 451968, 706992, 1065792, 1557192, 2214912, 3077952, 4190976, 5604696, 7376256, 9569616, 12255936, 15513960, 19430400, 24100320, 29627520, 36124920, 43714944, 52529904, 62712384, 74415624, 87803904
OFFSET
-1,2
COMMENTS
There are 50 polynomials from the sequences which can be summed to a solution of the quartic oscillator.
FORMULA
a(n) = (n+1)*(n+2)*(n+3)*(4+44*n/5+16*n^2/5).
G.f.: 24*x*(1+10*x+5*x^2) / (x-1)^6. - R. J. Mathar, Oct 24 2013
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Wesley Ivan Hurt, Oct 24 2014
MAPLE
A228406:=n->(n+1)*(n+2)*(n+3)*(4+44*n/5+16*n^2/5): seq(A228406(n), n=-1..30); # Wesley Ivan Hurt, Oct 24 2014
MATHEMATICA
CoefficientList[Series[24*x*(1 + 10*x + 5*x^2)/(x - 1)^6, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 24 2014 *)
PROG
(Magma) [(n+1)*(n+2)*(n+3)*(4+44*n/5+16*n^2/5) : n in [-1..30]]; // Wesley Ivan Hurt, Oct 24 2014
CROSSREFS
Cf. A225007.
Sequence in context: A022565 A025974 A059157 * A087292 A081138 A269181
KEYWORD
nonn,easy
AUTHOR
Charles A. Lane, Aug 22 2013
STATUS
approved