

A228356


The triangle associated with the family of polynomials W_n(x).


0



1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 19, 7, 1, 1, 9, 71, 41, 9, 1, 1, 11, 265, 239, 71, 11, 1, 1, 13, 989, 1393, 559, 109, 13, 1, 1, 15, 3691, 8119, 4401, 1079, 155, 15, 1, 1, 17, 13775, 47321, 34649, 10681, 1847, 209, 17, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

W_n(x) is the family of polynomials in x with integer coefficients given by W_n(x) = sin((2n+1)arccos(x)/2)/(sin(arccos(x)/2)).
These polynomials are intimately linked with the Chebyshev polynomials of the first and second kinds, and represent the polynomials associated with the Dirichlet kernel.


LINKS

Table of n, a(n) for n=0..54.


FORMULA

W_{n+1} = 2xW_n(x)  W_{n1}, W_0(x)=1, W_1(x)=2x+1.


EXAMPLE

The triangle is given here as W_0(0)=1, W_1(0)=1, W_0(1)=1, W_2(0)=1, W_1(1)=3, W_0(2)=1, W_3(0)=1, W_2(1)=5 ...


MATHEMATICA

W[0, _] = 1; W[1, x_] := 2 x + 1; W[n_, x_] := W[n, x] = 2 x W[n  1, x]  W[n  2, x]; Table[W[n  x, x] , {n, 0, 9}, {x, 0, n}] // Flatten (* JeanFrançois Alcover, Jun 11 2017 *)


CROSSREFS

Cf. A028297, A101124, A133156, A228161, A228565, A228637, A180870.
Sequence in context: A108359 A100936 A086620 * A253670 A137897 A296327
Adjacent sequences: A228353 A228354 A228355 * A228357 A228358 A228359


KEYWORD

sign,easy,tabl


AUTHOR

Jonny Griffiths, Aug 28 2013


STATUS

approved



