This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228329 a(n) = Sum_{k=0..n} (k+1)^2*T(n,k)^2 where T(n,k) is the Catalan triangle A039598. 8
 1, 8, 98, 1320, 18590, 268736, 3952228, 58837680, 883941750, 13373883600, 203487733020, 3110407163760, 47726453450988, 734694122886080, 11341161925265480, 175489379096245984, 2721169178975361702, 42273090191785999728, 657788911222324942060, 10250564041646388681200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(2). REFERENCES Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33 LINKS G. C. Greubel, Table of n, a(n) for n = 0..825 Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv:1305.2017, 2013. FORMULA Conjecture: n*(2*n+1)*a(n) + 2*(-26*n^2+25*n-11)*a(n-1) + 20*(4*n-5)*(4*n-7)*a(n-2) = 0. - R. J. Mathar, Sep 08 2013 a(n) = ((4n)!*(3n+1))/((2n)!^2*(2n+1)) = binomial(4n,2n)*(3n+1)/(2n+1). - Philippe Deléham, Nov 25 2013 From Peter Luschny, Nov 26 2013: (Start) a(n) = 16^n*(3*n+1)*gamma(2*n+1/2)/(sqrt(Pi)*gamma(2*n+2)). a(n) = a(n-1)*(6*n+2)*(4*n-3)*(4*n-1)/(n*(2*n+1)*(3*n-2)) if n > 0 else 1. a(n) = [x^n] I*HeunG(8/5,0,-1/4,1/4,3/2,1/2,16*x)/sqrt(16*x-1) where [x^n] f(x) is the coefficient of x^n in f(x) and HeunG is the Heun general function. (End) MAPLE B:=(n, k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); #A039598 Omega:=(m, n)->add((k+1)^m*B(n, k)^2, k=0..n); h:=m->[seq(Omega(m, n), n=0..20)]; h(2); # Second solution: h := n -> I*HeunG(8/5, 0, -1/4, 1/4, 3/2, 1/2, 16*x)/sqrt(16*x-1); seq(coeff(series(h(x), x, n+2), x, n), n=0..19); # Peter Luschny, Nov 26 2013 MATHEMATICA a[n_] := Binomial[4n, 2n] (3n+1)/(2n+1); Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *) PROG (Sage) @CachedFunction def A228329(n):     return A228329(n-1)*(6*n+2)*(4*n-3)*(4*n-1)/(n*(2*n+1)*(3*n-2)) if n>0 else 1 [A228329(n) for n in (0..19)]  # Peter Luschny, Nov 26 2013 CROSSREFS Cf. A039598, A000108, A024492 (h(0)), A000894 (h(1)), A000515 (h(3)), A228330 (h(4)), A228331 (h(5)) - A228333 (h(7)). Cf. A000142, A007318. Sequence in context: A099150 A116229 A199029 * A228794 A211869 A159232 Adjacent sequences:  A228326 A228327 A228328 * A228330 A228331 A228332 KEYWORD nonn AUTHOR N. J. A. Sloane, Aug 26 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 24 00:04 EDT 2018. Contains 316541 sequences. (Running on oeis4.)