The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228311 Numbers k such that the sum of digits of k! is itself a factorial. 1
 0, 1, 2, 3, 4, 21966, 176755, 182624820 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The sum of digits of k! is approximately (9/2)*(d-z), where d=A034886(k) is the number of digits of k!, which is about (log(k/E)*k + log(2*k*Pi)/2)/log(10), and z=A027868(k) is the number of trailing zeros of k!, which is Sum_{j=1, 2, ...) floor(k/5^j). - Giovanni Resta, Aug 28 2013 a(9) > 2.235*10^9 - Hans Havermann, May 16 2014 k! has ~ k log_10(k) digits, so its digit sum is typically close to C*k*log_10(k) for some constant C. A random number around j has probability something like log(j)/(j log log(j)) of being a factorial, so the probability that the digit sum of k! is a factorial should be something like const/(k log log k). The sum of this diverges, so we should expect infinitely many terms in the sequence. - Robert Israel, Aug 08 2014 LINKS "Mouhaha" Digit sums and factorials EXAMPLE The sum of the digits of 21966! is 362880 = 9!. The sum of the digits of 176755! is 3628800 = 10!. The sum of the digits of 182624820! is 6227020800 = 13!. MATHEMATICA lst = {0}; k = p = 1; fctl = Range@ 15!; While[k < 180000, p = p*k; While[ Mod[p, 10] == 0, p /= 10]; If[ MemberQ[ fctl, Plus @@ IntegerDigits@ p], Print[k]; AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Feb 18 2014 *) PROG (PARI) lpf(n)=my(f=factor(n)[, 1]); f[1] factorial_lval(n, p)={     my(s);     while(n\=p, s+=n);     s }; isfactorial(n)={     if(n<3, return(n>0));     my(v2=valuation(n, 2), mn=v2+1, mx=mn+log(v2+1.5)\log(2), t, c);     while (mx - mn > 1,         t = mn + (mx - mn)\2;         c = factorial_lval(t, 2);         if (c < v2,             mn = t+1         ,             if (c > v2,                 mx = t-1             ,                 mx = bitor(t, 1);                 mn = max(mn, mx-1)             )         )     );     if (mn < mx,         my(p=lpf(mx));         t = valuation(n, p);         c = factorial_lval(mx, p);         if (t > c, return(0));         if (t == c,             mn = mx         )     );     n==mn! }; is(n)=isfactorial(sumdigits(n!)) CROSSREFS Cf. A229024, A004152. Sequence in context: A062929 A038105 A143716 * A258107 A307256 A107656 Adjacent sequences:  A228308 A228309 A228310 * A228312 A228313 A228314 KEYWORD nonn,base,hard,nice,more AUTHOR Charles R Greathouse IV, Aug 27 2013 EXTENSIONS a(8) from Hans Havermann, Mar 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 17:12 EDT 2022. Contains 356122 sequences. (Running on oeis4.)