|
|
A228297
|
|
Generalized meta-Fibonacci sequence a(n) with parameters s=0 and k=5.
|
|
3
|
|
|
1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 25, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 50, 50, 51, 52, 53
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
It appears that a(n) = A007845(n)/5 for n>0 (verified up to n=800).
Each integer n appears x+1 times where x is the greatest power of 5 in the factorization of n. - Gerald Hillier, Feb 08 2020
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 1..10000
C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, J. Integer Seq., Vol. 12, 2009, Article 09.4.3.
|
|
MATHEMATICA
|
Array[ConstantArray[#, IntegerExponent[#, 5] + 1] &, 53] // Flatten (* Michael De Vlieger, Feb 08 2020 *)
|
|
PROG
|
(PARI) a(n)= {local(A); if(n<=5, max(0, n), A=vector(n, i, i); for(k=6, n, A[k]= A[k-A[k-1]] + A[k-1-A[k-2]] + A[k-2-A[k-3]] + A[k-3-A[k-4]] + A[k-4-A[k-5]]; ); A[n]; ); }
(HP 49G calculator)
« DUPDUP 5 IQUOT -
WHILE DUP 0 OVER
DO 5 IQUOT DUP
ROT + SWAP DUP NOT
UNTIL
END DROP +
PICK3 <
REPEAT 1 +
END NIP
» Gerald Hillier, Sep 19 2017
|
|
CROSSREFS
|
Cf. A120503, A120507, A228298.
Sequence in context: A331268 A053757 A256562 * A303788 A319288 A106744
Adjacent sequences: A228294 A228295 A228296 * A228298 A228299 A228300
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Marcus, Aug 20 2013
|
|
STATUS
|
approved
|
|
|
|