This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228273 T(n,k) is the number of s in {1,...,n}^n having longest ending contiguous subsequence with the same value of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 7
 1, 0, 1, 0, 2, 2, 0, 18, 6, 3, 0, 192, 48, 12, 4, 0, 2500, 500, 100, 20, 5, 0, 38880, 6480, 1080, 180, 30, 6, 0, 705894, 100842, 14406, 2058, 294, 42, 7, 0, 14680064, 1835008, 229376, 28672, 3584, 448, 56, 8, 0, 344373768, 38263752, 4251528, 472392, 52488, 5832, 648, 72, 9 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Rows n = 0..140, flattened FORMULA T(0,0) = 1, else T(n,k) = 0 for k<1 or k>n, else T(n,n) = n, else T(n,k) = (n-1)*n^(n-k). Sum_{k=0..n}   T(n,k) = A000312(n). Sum_{k=0..n} k*T(n,k) = A031972(n). EXAMPLE T(0,0) = 1: []. T(1,1) = 1: [1]. T(2,1) = 2: [1,2], [2,1]. T(2,2) = 2: [1,1], [2,2]. T(3,1) = 18: [1,1,2], [1,1,3], [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [3,1,2], [3,1,3], [3,2,1], [3,2,3], [3,3,1], [3,3,2]. T(3,2) = 6: [1,2,2], [1,3,3], [2,1,1], [2,3,3], [3,1,1], [3,2,2]. T(3,3) = 3: [1,1,1], [2,2,2], [3,3,3]. Triangle T(n,k) begins:   1;   0,        1;   0,        2,       2;   0,       18,       6,      3;   0,      192,      48,     12,     4;   0,     2500,     500,    100,    20,    5;   0,    38880,    6480,   1080,   180,   30,   6;   0,   705894,  100842,  14406,  2058,  294,  42,  7;   0, 14680064, 1835008, 229376, 28672, 3584, 448, 56,  8; MAPLE T:= (n, k)-> `if`(n=0 and k=0, 1, `if`(k<1 or k>n, 0,              `if`(k=n, n, (n-1)*n^(n-k)))): seq(seq(T(n, k), k=0..n), n=0..12); MATHEMATICA f[0, 0]=1; f[n_, k_]:=Which[1<=k<=n-1, n^(n-k)*(n-1), k<1, 0, k==n, n, k>n, 0]; Table[Table[f[n, k], {k, 0, n}], {n, 0, 10}]//Grid (* Geoffrey Critzer, May 19 2014 *) CROSSREFS Row sums give: A000312. Columns k=0-4 give: A000007, A066274(n) = 2*A081131(n) for n>1, A053506(n) for n>2, A055865(n-1) = A085389(n-1) for n>3, A085390(n-1) for n>4. Main diagonal gives: A028310. Lower diagonals include (offsets may differ): A002378, A045991, A085537, A085538, A085539. Cf. A228154, A228617. Sequence in context: A091466 A134085 A151339 * A069521 A245687 A228617 Adjacent sequences:  A228270 A228271 A228272 * A228274 A228275 A228276 KEYWORD nonn,tabl,easy AUTHOR Alois P. Heinz, Aug 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 21:28 EST 2019. Contains 329937 sequences. (Running on oeis4.)