This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228250 Total sum A(n,k) of lengths of longest contiguous subsequences with the same value over all s in {1,...,n}^k; square array A(n,k), n>=0, k>=0, read by antidiagonals. 3
 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 16, 12, 4, 0, 0, 5, 38, 45, 20, 5, 0, 0, 6, 86, 156, 96, 30, 6, 0, 0, 7, 188, 519, 436, 175, 42, 7, 0, 0, 8, 404, 1680, 1916, 980, 288, 56, 8, 0, 0, 9, 856, 5349, 8232, 5345, 1914, 441, 72, 9, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened Project Euler, Problem 427: n-sequences EXAMPLE A(4,1) = 4 = 1+1+1+1: [1], [2], [3], [4]. A(1,4) = 4: [1,1,1,1]. A(3,2) = 12 = 2+1+1+1+2+1+1+1+2: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3]. A(2,3) = 16 = 3+2+1+2+2+1+2+3: [1,1,1], [1,1,2], [1,2,1], [1,2,2], [2,1,1], [2,1,2], [2,2,1], [2,2,2]. Square array A(n,k) begins:   0, 0,  0,   0,    0,     0,      0,       0, ...   0, 1,  2,   3,    4,     5,      6,       7, ...   0, 2,  6,  16,   38,    86,    188,     404, ...   0, 3, 12,  45,  156,   519,   1680,    5349, ...   0, 4, 20,  96,  436,  1916,   8232,   34840, ...   0, 5, 30, 175,  980,  5345,  28610,  151115, ...   0, 6, 42, 288, 1914, 12450,  79716,  504492, ...   0, 7, 56, 441, 3388, 25571, 190428, 1403689, ... MAPLE b:= proc(n, m, s, i) option remember; `if`(m>i or s>m, 0,       `if`(i=0, 1, `if`(i=1, n, `if`(s=1, (n-1)*add(          b(n, m, h, i-1), h=1..m), b(n, m, s-1, i-1)+       `if`(s=m, b(n, m-1, s-1, i-1), 0)))))     end: A:= (n, k)-> add(m*add(b(n, m, s, k), s=1..m), m=1..k): seq(seq(A(n, d-n), n=0..d), d=0..12); MATHEMATICA b[n_, m_, s_, i_] := b[n, m, s, i] = If[m>i || s>m, 0, If[i == 0, 1, If[i == 1, n, If[s == 1, (n-1)*Sum[b[n, m, h, i-1], {h, 1, m}], b[n, m, s-1, i-1] + If[s == m, b[n, m-1, s-1, i-1], 0]]]]]; A[n_, k_] := Sum[m*Sum[b[n, m, s, k], {s, 1, m}], {m, 1, k}]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *) CROSSREFS Columns k=0-3 give: A000004, A001477, A002378, A152618(n+1). Rows n=0-2 give: A000004, A001477, 2*A102712. Main diagonal gives: A228194. Cf. A228275. Sequence in context: A185651 A265080 A228275 * A101164 A229079 A254040 Adjacent sequences:  A228247 A228248 A228249 * A228251 A228252 A228253 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Aug 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:05 EDT 2019. Contains 328267 sequences. (Running on oeis4.)