login
A228227
Primes congruent to {7, 11} mod 16.
2
7, 11, 23, 43, 59, 71, 103, 107, 139, 151, 167, 199, 251, 263, 283, 311, 331, 347, 359, 379, 439, 443, 487, 491, 503, 523, 571, 587, 599, 619, 631, 647, 683, 727, 743, 811, 823, 827, 839, 859, 887, 907, 919, 967, 971, 983, 1019, 1031, 1051, 1063, 1163, 1223
OFFSET
1,1
COMMENTS
Union of A141194 and A141195.
Let p be a prime number and let E(p) denote the elliptic curve y^2 = x^3 + p*x. If p is in the sequence, then the rank of E(p) is 0. Therefore A060953(a(n)) = 0.
REFERENCES
J. H. Silverman, The arithmetic of elliptic curves, Springer, NY, 1986, p. 311.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
MATHEMATICA
Select[Prime@Range[200], MemberQ[{7, 11}, Mod[#, 16]] &]
PROG
(Magma) [p: p in PrimesUpTo(1223) | p mod 16 in {7, 11}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved