login
Number of labeled rooted identity trees on n nodes (rooted trees that admit n! labelings).
2

%I #10 Aug 14 2013 15:14:44

%S 0,1,2,6,48,360,4320,60480,1008000,18869760,410054400,9859449600,

%T 262492876800,7634327500800,241483866624000,8237040844032000,

%U 301832166924288000,11812023799640064000,492028821658902528000,21728004544824754176000,1014150336304416030720000

%N Number of labeled rooted identity trees on n nodes (rooted trees that admit n! labelings).

%C a(n) = n! * A004111(n).

%H Alois P. Heinz, <a href="/A228159/b228159.txt">Table of n, a(n) for n = 0..150</a>

%F E.g.f. A(x) satisfies A(x) = x Product_{n>=1} x*(1 + x^n)^(a(n)/n!).

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(binomial(b(i-1$2), j)*b(n-i*j, i-1), j=0..n/i)))

%p end:

%p a:= n-> n!*b(n-1$2):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Aug 14 2013

%t nn=20;SolveAlways[

%t 0 == Series[

%t f[x] - x Product[(1 + x^i)^(a[i]/i!), {i, 1, nn}], {x, 0, nn}],

%t x]; Table[a[n], {n, 0, nn}] /. sol

%K nonn

%O 0,3

%A _Geoffrey Critzer_, Aug 14 2013