

A228122


Smallest nonnegative number x such that x^2 + x + 41 has exactly n prime factors counting multiplicities.


4




OFFSET

1,2


LINKS

Table of n, a(n) for n=1..10.


EXAMPLE

a(1) = 0 because if x = 0 then x^2 + x + 41 = 41, which has 1 prime factor.
a(2) = 40 because if x = 40 then x^2 + x + 41 = 1681 = 41*41, which has 2 prime factors, counting multiplicities.
a(3) = 420 because if x = 420 then x^2 + x + 41 = 176861 = 47*53*71, which has 3 prime factors.


MATHEMATICA

a = {}; Do[x = 0; While[PrimeOmega[x^2 + x + 41] != k, x++]; AppendTo[a, x], {k, 9}]; a


PROG

(PARI) a(n) = {my(m=0); while (bigomega(m^2+m+41) != n, m++); m; } \\ Michel Marcus, Jan 31 2016
(Python)
from sympy import factorint
def A228122(n):
k = 0
while sum(factorint(k*(k+1)+41).values()) != n:
k += 1
return k # Chai Wah Wu, Sep 07 2018


CROSSREFS

Cf. A005846, A007634, A145292, A145293, A056561.
Sequence in context: A168192 A251129 A007772 * A247408 A285855 A210355
Adjacent sequences: A228119 A228120 A228121 * A228123 A228124 A228125


KEYWORD

nonn,more


AUTHOR

Shyam Sunder Gupta, Aug 11 2013


EXTENSIONS

a(9) from Zak Seidov, Feb 01 2016
a(10) from Giovanni Resta, Sep 08 2018


STATUS

approved



