login
A228112
Difference between the number of primes with n digits (A006879) and the 6-parametric approximation of that number in A228111.
5
0, 0, 0, -2, -22, -23, 1614, 21952, 200754, 1427826, 6969680, -2536429, -648528610, -11247293516, -143493754330, -1578026921839, -15633412845816, -140582270611489, -1122913035234416, -7326349588043722, -25245049578998081, 301375487087871682, 9140885960557495580, 157255672291012140238, 2265259467069624459434
OFFSET
1,4
COMMENTS
A228111 provides exact values of pi(10^n) - pi(10^(n-1)) for n = 1 to 3 and yields an average relative difference in absolute value, i.e. average(abs(A228112(n))/A006879(n) = 0.00375341... for 1 <= n <= 25, better than when using the 10^n/log(10^n) function, which yields 0.0469094... (see A228066) or the logarithmic integral (Li(10^n) - Li(2)) function, which yields 0.0175492... (see A228068) or the Riemann (Riemann(10^n)) function, which yields 0.0103936... (see A228114) or the Fibonacci polynomials of multiple of 4 indices, which yields 0.00473860... (see A228064) for 1 <= n <= 25.
LINKS
Eric Weisstein's World of Mathematics, Prime Counting Function.
Eric Weisstein's World of Mathematics, Fibonacci Polynomial.
FORMULA
a(n) = A006879(n)- A228111(n).
KEYWORD
sign
AUTHOR
Vladimir Pletser, Aug 10 2013
STATUS
approved