%I #21 Jul 11 2021 12:16:12
%S 4,7,11,19,31,51,86,143,238,397,662,1103,1838,3063,5104,8507,14179,
%T 23631,39386,65643,109404,182341,303901,506502,844170,1406950,2344917,
%U 3908195,6513658,10856097,18093496,30155826,50259710,83766183,139610306,232683843
%N a(n) = round((5^n)*4 / 3^n).
%C The nearest integer of perimeter of Cross-Stitch Curve (fractal) after n-th iteration starting with a unit square.
%C The total side segments after n-th iteration is (5^n)*4.
%H Andrew Howroyd, <a href="/A228079/b228079.txt">Table of n, a(n) for n = 0..500</a>
%H Kival Ngaokrajang, <a href="/A228079/a228079_2.jpg">Illustration for n = 0..4</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Cross-StitchCurve.html">Cross-Stitch Curve</a>
%F a(n) = round(A000351(n)*4 / A000244(n)).
%e For n = 1, the total sides = 4 * 5 = 20, each side length = 1/3, the perimeter = 20 * 1/3 = 6.666..; a(1) = 7.
%e For n = 2, the total sides = 4 * 5^2 = 100, each side length = 1/9, the perimeter = 100 * 1/9 = 11.111..; a(2) = 11.
%o (MIT/GNU Scheme) (define (A228079 n) (round->exact (/ (* 4 (expt 5 n)) (expt 3 n)))) - _Antti Karttunen_, Aug 09 2013
%o (PARI) a(n) = {round((5^n)*4 / 3^n)} \\ _Andrew Howroyd_, Nov 05 2019
%Y Cf. A000351, A000244.
%K nonn
%O 0,1
%A _Kival Ngaokrajang_, Aug 09 2013
%E Terms a(23) and beyond from _Andrew Howroyd_, Nov 05 2019