This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228078 a(n) = 2^n - Fibonacci(n) - 1. 2
 0, 0, 2, 5, 12, 26, 55, 114, 234, 477, 968, 1958, 3951, 7958, 16006, 32157, 64548, 129474, 259559, 520106, 1041810, 2086205, 4176592, 8359950, 16730847, 33479406, 66987470, 134021309, 268117644, 536356682, 1072909783, 2146137378, 4292788986, 8586410013 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n+1) = sum of n-th row of the triangle in A228074. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-4,-1,2). FORMULA a(n) = A000079(n) - A000045(n) - 1 = A000225(n) - A000045(n) = A000079(n) - A001611(n) = A099036(n) - 1. a(n) = 4*a(n-1)-4*a(n-2)-a(n-3)+2*a(n-4) for n>3. - Colin Barker, Mar 20 2015 G.f.: x^2*(3*x-2) / ((x-1)*(2*x-1)*(x^2+x-1)). - Colin Barker, Mar 20 2015 a(n) = (-1+2^n+(((1-sqrt(5))/2)^n-((1+sqrt(5))/2)^n)/sqrt(5)). - Colin Barker, Nov 02 2016 MATHEMATICA Table[(2^n - Fibonacci[n] - 1), {n, 0, 40}] (* Vincenzo Librandi, Aug 16 2013 *) PROG (Haskell) a228078 = subtract 1 . a099036 (MAGMA) [2^n - Fibonacci(n) - 1: n in [0..40]]; // Vincenzo Librandi, Aug 16 2013 (PARI) concat([0, 0], Vec(x^2*(3*x-2)/((x-1)*(2*x-1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Mar 20 2015 CROSSREFS Sequence in context: A198896 A026688 A116726 * A125180 A073778 A033490 Adjacent sequences:  A228075 A228076 A228077 * A228079 A228080 A228081 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Aug 15 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 11:56 EST 2019. Contains 319363 sequences. (Running on oeis4.)