login
A228043
Decimal expansion of sum of reciprocals, row 5 of Wythoff array, W = A035513.
3
2, 1, 4, 9, 7, 1, 4, 1, 6, 5, 6, 0, 7, 9, 4, 3, 8, 8, 2, 9, 3, 0, 0, 2, 8, 2, 5, 7, 2, 9, 7, 3, 1, 7, 9, 4, 9, 2, 2, 2, 2, 6, 2, 8, 3, 4, 3, 2, 9, 9, 2, 1, 2, 1, 6, 2, 3, 8, 8, 8, 4, 5, 3, 8, 3, 1, 2, 8, 2, 5, 7, 9, 7, 4, 9, 1, 7, 0, 8, 4, 5, 9, 0, 3, 8, 5
OFFSET
0,1
COMMENTS
Let c be the constant given by A079586, that is, the sum of reciprocals of the Fibonacci numbers F(k) for k>=1. The number c-1, the sum of reciprocals of row 1 of W, is known to be irrational (see A079586). Conjecture: the same is true for all the other rows of W.
Let h be the constant given at A153387 and s(n) the sum of reciprocals of numbers in row n of W. Then h < 1 + s(n)*floor(n*tau) < c. Thus, s(n) -> 0 as n -> oo.
FORMULA
Equals A079586/4 - 5/8. - Amiram Eldar, May 22 2021
EXAMPLE
1/12 + 1/20 + 1/32 + ... = 0.21497141656079438829300282572973179492222...
MATHEMATICA
f[n_] := f[n] = Fibonacci[n]; g = GoldenRatio; w[n_, k_] := w[n, k] = f[k + 1]*Floor[n*g] + f[k]*(n - 1);
n = 5; Table[w[n, k], {n, 1, 5}, {k, 1, 5}]
r = N[Sum[1/w[n, k], {k, 1, 2000}], 120]
RealDigits[r, 10]
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Aug 05 2013
STATUS
approved