

A227903


Sequence of pairs k>0 and j>1 with the smallest j and the smallest sum j+k such that (k*j^n+1)*k*j^n1 is prime.


2



1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 5, 2, 1, 4, 2, 2, 1, 2, 3, 3, 1, 3, 2, 3, 4, 2, 2, 2, 1, 2, 3, 3, 1, 3, 1, 5, 2, 5, 5, 4, 4, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 4, 1, 5, 5, 6, 6, 3, 2, 3, 2, 5, 4, 2, 2, 2, 1, 2, 2, 5, 6, 4, 5, 2, 4, 3, 13, 2, 4, 5, 5, 2, 10, 4, 3, 14, 3, 11, 8, 4, 2, 4, 1, 7, 6, 3, 2, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 6, 4, 3, 8, 3, 4, 2, 3, 1, 11, 9, 6, 4, 7, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Pierre CAMI, Table of n, a(n) for n = 1..4000


PROG

PFGW & SCRIPTIFY
SCRIPT
DIM n, 0
DIM j
DIM k
DIM ss
DIMS tt
OPENFILEOUT myf, a(n).txt
LABEL a
SET n, n+1
IF n>2000 THEN END
SET ss, 2
LABEL b
SET ss, ss+1
SET j, 1
LABEL c
SET j, j+1
SET k, ssj
IF k<1 THEN GOTO b
SETS tt, %d, %d, %d\,; n; k; j
PRP (k*j^n+1)*k*j^n1, tt
IF ISPRP THEN GOTO d
GOTO c
LABEL d
WRITE myf, tt
GOTO a


CROSSREFS

Cf. A156051, A230259.
Sequence in context: A003640 A107459 A087976 * A117277 A033831 A033105
Adjacent sequences: A227900 A227901 A227902 * A227904 A227905 A227906


KEYWORD

nonn


AUTHOR

Pierre CAMI, Oct 15 2013


STATUS

approved



