login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227879 Integer areas of incentral triangles of integer-sided triangles. 1
70, 280, 360, 480, 630, 1120, 1312, 1440, 1750, 1768, 1920, 2132, 2520, 3240, 3430, 4320, 4480, 5248, 5670, 5760, 7000, 7038, 7072, 7680, 7800, 8470, 8528, 9000, 9240, 10080, 11808, 11830, 12000, 12960, 13720, 13950, 14744, 15750, 15912, 17280, 17640, 17920 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The incentral triangle IJK is the Cevian triangle of a triangle ABC with respect to its incenter. It is therefore also the triangle whose vertices are determined by the intersections of the reference triangle's angle bisectors with the respective opposite sides.
The area is given by:
A' = 2*A*a*b*c/((a+b)*(b+c)*(c+a)) where A is the area of the original triangle.
The side lengths are:
a' = a*b*c*sqrt(3+2*(-cos A + cos B + cos C))/((a+b)*(a+c))
b' = a*b*c*sqrt(3+2*(cos A - cos B + cos C))/((b+c)*(b+a))
c' = a*b*c*sqrt(3+2*(cos A + cos B - cos C))/((c+a)*(c+b))
Properties of this sequence:
The areas of the original triangles are integers. The primitive triangles with areas a(n) are 70, 360, 480, 630, 1312, ...
The nonprimitive triangles with areas 4*a(n) are in the sequence.
It appears that if the original triangle is isosceles, a side of the corresponding incenter triangle is integer.
The following table gives the first values (A', A, a, b, c, t1, t2, t3) where A' is the area of the incentral triangles, A is the area of the reference triangles ABC, a, b, c the integer sides of the original triangles ABC and t1, t2, t3 are the sides of the incentral triangles.
------------------------------------------------------------------------
A'| A | a | b | c | t1 | t2 | t3
------------------------------------------------------------------------
70 | 294| 21| 28| 35|3*sqrt(65)/2 |4*sqrt(85)/3 |7*sqrt(145)/6
280 |1176| 42| 56| 70|3*sqrt(65) |8*sqrt(85)/2 |7*sqrt(145)/3
360 |1452| 55| 55| 66|3*sqrt(89) |3*sqrt(89) | 30
480 |2028| 65| 65|104|4*sqrt(61) |4*sqrt(61) | 40
630 |2646| 63| 84|105|9*sqrt(65)/2 |4*sqrt(85) |7*sqrt(145)/2
1120|4704| 84| 112|140|6*sqrt(65) |16*sqrt(85)/3 |14*sqrt(145)/3
1312|8820| 63| 280|287|36*sqrt(2501)/35|40*sqrt(7585)/63|28*sqrt(9061)/45
1440|5808|110| 110|132|6*sqrt(89) |6*sqrt(89) | 60
1750|7350|105| 140|175|15*sqrt(65)/2 |20*sqrt(85)/3 |35*sqrt(145)/6
1768|8670| 85| 204|221|50*sqrt(13)/3 |12*sqrt(689)/5 |34*sqrt(949)/15
1920|8112|130| 130|208|8*sqrt(61) |8*sqrt(61) | 80
.......................................................
REFERENCES
C. Kimberling, Triangle Centers and Central Triangles. Congr. Numer. 129, 1-295, 1998.
LINKS
Wolfram MathWorld, Incentral Triangles
EXAMPLE
70 is in the sequence because the formula A' = 2*A*a*b*c/((a+b)*(b+c)*(c+a))
gives with the initial triangle (21,28,35): A'= 2*294*21*28*35/((21+28)*(28+35)*(35+21))= 70, with the area A = 294 obtained by Heron's formula A =sqrt(s*(s-a)*(s-b)*(s-c))= sqrt((42*(42-21)*(42-28)*(42-35)) = 294, where s=42 is the semiperimeter.
MATHEMATICA
nn=1000; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s(s-a)(s-b)(s-c); t= 2*Sqrt[area2]*a*b*c/((a+b)*(b+c)*(c+a)); If[0<area2 && IntegerQ[t], AppendTo[lst, t]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
CROSSREFS
Cf. A188158.
Sequence in context: A234564 A234557 A245857 * A072596 A309310 A330702
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 25 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 06:04 EDT 2024. Contains 371906 sequences. (Running on oeis4.)