

A227876


Write the decimal digits of n and take successive absolute differences; sequence is the sum of all digits at each level of the pyramid.


5



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 2, 4, 6, 8, 10, 12, 14, 16, 18, 4, 4, 4, 6, 8, 10, 12, 14, 16, 18, 6, 6, 6, 6, 8, 10, 12, 14, 16, 18, 8, 8, 8, 8, 8, 10, 12, 14, 16, 18, 10, 10, 10, 10, 10, 10, 12, 14, 16, 18, 12, 12, 12, 12, 12, 12, 12, 14, 16, 18, 14, 14, 14, 14, 14, 14, 14, 14, 16, 18, 16, 16, 16, 16, 16, 16, 16, 16, 16, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 3, 4, 7, 10, 13, 16, 19, 22, 25, 28, 4, 3, 6, 9, 12, 15, 18, 21, 24, 27, 7, 6, 7, 8, 11, 14, 17, 20, 23, 26
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

A given nonnegative integer n is decomposed into its digits and the absolute differences between the digits are taken, then the differences between differences between digits (and so on, until the top of the difference pyramid is reached). The sum of the resulting digits is a(n).


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..10000


FORMULA

a(n)=n, if 0<=n<=9;
a(n)=n9*floor(n/10)+n+11*floor(n/10), if 10<=n<=99;
a(n)=n9*floor(n/10)9*floor(n/100)+floor(n/10)+11*floor(n/100)+n+11*floor(n/10)10*floor(n/100)+floor(n/10)+11*floor(n/100)n+11*floor(n/10)10*floor(n/100), if 100<=n<=999.


EXAMPLE

a(364)=19
.
____1____
__3_:_2_ > 3+6+4+36+64+3664=3+6+4+3+2+1=19
3_:_6_:_4


MATHEMATICA

Join[{0}, Table[Total[Abs[Flatten[NestList[Differences[Abs[#]]&, IntegerDigits[n], IntegerLength[n]1]]]], {n, 130}]] (* Harvey P. Dale, Mar 02 2015 *)


PROG

(PARI) a(n)=my(d=digits(n), s); while(#d, s+=sum(i=1, #d, d[i]); d=vector(#d1, i, abs(d[i+1]d[i]))); s \\ Charles R Greathouse IV, Oct 25 2013
(Haskell)
a227876 n = fst $ until (null . snd) h (0, a031298_row n) where
h (s, ds) = (s + sum ds, map abs $ zipWith () ds $ tail ds)
 Reinhard Zumkeller, Apr 28 2014


CROSSREFS

Cf. A031298.
Sequence in context: A297233 A177895 A238986 * A276716 A189506 A173529
Adjacent sequences: A227873 A227874 A227875 * A227877 A227878 A227879


KEYWORD

nonn,base,easy,hear


AUTHOR

Filipi R. de Oliveira, Oct 25 2013


STATUS

approved



