login
A boustrophedon triangle.
4

%I #20 Oct 10 2019 10:59:54

%S 1,1,2,4,3,1,1,5,8,9,24,23,18,10,1,1,25,48,66,76,77,294,293,268,220,

%T 154,78,1,1,295,588,856,1076,1230,1308,1309,6664,6663,6368,5780,4924,

%U 3848,2618,1310,1,1,6665,13328,19696,25476,30400,34248,36866,38176,38177

%N A boustrophedon triangle.

%C T(n, n * (n mod 2)) = A000667(n).

%H Reinhard Zumkeller, <a href="/A227862/b227862.txt">Rows n = 0..125 of table, flattened</a>

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>.

%H Ludwig Seidel, <a href="https://babel.hathitrust.org/cgi/pt?id=hvd.32044092897461&amp;view=1up&amp;seq=175">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the <a href="https://www.hathitrust.org/accessibility">HATHI TRUST Digital Library</a>]

%H Ludwig Seidel, <a href="https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1877_0157-0187.pdf">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through <a href="https://de.wikipedia.org/wiki/ZOBODAT">ZOBODAT</a>]

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>.

%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>

%e First nine rows:

%e . 0: 1

%e . 1: 1 -> 2

%e . 2: 4 <- 3 <- 1

%e . 3: 1 -> 5 -> 8 -> 9

%e . 4: 24 <- 23 <- 18 <- 10 <- 1

%e . 5: 1 -> 25 -> 48 -> 66 -> 76 -> 77

%e . 6: 294 <- 293 <- 268 <- 220 <- 154 <- 78 <- 1

%e . 7: 1 -> 295 -> 588 -> 856 -> 1076 -> 1230 -> 1308 -> 1309

%e . 8: 6664 <- 6663 <- 6368 <- 5780 <- 4924 <- 3848 <- 2618 <- 1310 <- 1 .

%t T[0, 0] = 1; T[n_?OddQ, 0] = 1; T[n_?EvenQ, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = If[OddQ[n], T[n, k - 1] + T[n - 1, k - 1], T[n, k + 1] + T[n - 1, k]]; T[_, _] = 0;

%t Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 23 2019 *)

%o (Haskell)

%o a227862 n k = a227862_tabl !! n !! k

%o a227862_row n = a227862_tabl !! n

%o a227862_tabl = map snd $ iterate ox (False, [1]) where

%o ox (turn, xs) = (not turn, if turn then reverse ys else ys)

%o where ys = scanl (+) 1 (if turn then reverse xs else xs)

%Y Cf. A008280.

%K nonn,tabl,look

%O 0,3

%A _Reinhard Zumkeller_, Nov 01 2013