%I #19 Sep 30 2013 13:47:45
%S 0,1,3,4,5,5,6,8,6,7,9,10,11,7,8,10,11,12,12,13,15,8,9,11,12,13,13,14,
%T 16,14,15,17,18,19,9,10,12,13,14,14,15,17,15,16,18,19,20,16,17,19,20,
%U 21,21,22,24,10,11,13,14,15,15,16,18,16,17,19,20,21,17,18,20
%N Sum of indices of Fibonacci numbers in Zeckendorf representation of n, assuming that the units place is Fibonacci(1).
%C If n = F(i1) + F(i2) +...+ F(ik) is the Zeckendorf representation of n (i.e., write n in Fibonacci number system) then a(n) = i1 + i2 +...+ ik. 1 is Fibonacci(1). The variant with 1 = Fibonacci(2) is A227788.
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/ZeckendorfRepresentation.html">Zeckendorf Representation</a>
%e a(33) = 19 because Zeckendorf representation of 33 is 21+8+3+1, 21=F(8), 8=F(6), 3=F(4), 1=F(1), thus a(33) = 8+6+4+1 = 19.
%Y Cf. A000045, A003714, A227788.
%K nonn
%O 0,3
%A _Alex Ratushnyak_, Sep 23 2013