login
A227784
Least number of fourth powers which add to -1 mod n.
1
0, 1, 2, 3, 4, 2, 2, 7, 2, 4, 2, 3, 2, 2, 4, 15, 1, 2, 2, 4, 2, 2, 2, 7, 4, 2, 2, 3, 3, 4, 2, 15, 2, 1, 4, 3, 2, 2, 2, 7, 1, 2, 2, 3, 4, 2, 2, 15, 2, 4, 2, 3, 2, 2, 4, 7, 2, 3, 2, 4, 2, 2, 2, 15, 4, 2, 2, 3, 2, 4, 2, 7, 1, 2, 4, 3, 2, 2, 2, 15, 2, 1, 2, 3, 4, 2, 3, 7, 1, 4, 2
OFFSET
1,3
COMMENTS
Parnami, Agrawal, & Rajwade proved (1981, Theorem 1) that, for a prime p > 29, a(p) = 1 if p = 1 mod 8 and otherwise a(p) = 2.
Conjecture: a(n) = 15 if n = 9 mod 16 and a(n) = 7 if n = 8 mod 16, otherwise a(n) <= 4. (The associated lower bounds are obvious.)
REFERENCES
J. C. Parnami, M. K. Agrawal, and A. R. Rajwade, On the 4-power Stufe of a field, Rendiconti del Circolo Matematico di Palermo (2) 30:2 (1981), pp. 245-254.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
J. C. Parnami, M. K. Agrawal, and A. R. Rajwade, On the 4-power Stufe of p-adic completions of algebraic number fields, Rendiconti del Seminario Matematico Università e Politecnico di Torino 44:1 (1986), pp. 141-153.
FORMULA
a(n) <= A002377(n-1) <= 19.
a(n) = 1 if and only if n > 1 is in A192453.
PROG
(PARI) a(n)=if(n==1, return(0)); if(n>29 && isprime(n), return(if(n%8>1, 2, 1))); my(N, cur, new, k=1); for(i=1, n\2, cur=N=bitor(1<<(i^4%n), N)); while(!bittest(cur, n-1), new=0; for(i=1, n\2, t=cur<<(i^4%n); t=bitor(bitand(t, (1<<n)-1), t>>n); new=bitor(new, t)); k++; cur=new); k
CROSSREFS
Sequence in context: A162247 A264809 A035578 * A256445 A275103 A359729
KEYWORD
nonn
AUTHOR
STATUS
approved