login
Least splitter of n-th and (n+1)st partial sums of 1/0! + 1/1! + ... + 1/n! + ... = e.
1

%I #38 Jul 15 2015 17:48:17

%S 1,2,3,7,39,110,252,465,1001,9545,27634,136168,589394,398959,5394991,

%T 36568060,130087267,312129649,5779594018,5467464369,69204258903,

%U 186055048882,403978495031,8690849042711,25668568633102,246378923308185,1163579759684330

%N Least splitter of n-th and (n+1)st partial sums of 1/0! + 1/1! + ... + 1/n! + ... = e.

%C Suppose x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y. Let s(n) = 1/0! + 1/1! + ... + 1/n!; since s(n) -> e, the corresponding least splitting rationals (see Example) also approach e.

%C Conjecture: a(n) <= n*sqrt(n!) for all n>0; see scatterplot under Links. - _Jon E. Schoenfield_, Jun 28 2015

%H Jon E. Schoenfield, <a href="/A227777/b227777.txt">Table of n, a(n) for n = 1..807</a>

%H Manfred Scheucher, <a href="/A227777/a227777.sage.txt">Sage Script</a>

%H Jon E. Schoenfield, <a href="/A227777/a227777.txt">Magma program</a>

%H Jon E. Schoenfield, <a href="/A227777/a227777_1.png">Scatterplot of a(n)/(n*sqrt(n!)) vs. n for n = 1..5000</a>

%e The first 19 splitting rationals are 2, 5/2, 8/3, 19/7, 106/39, 299/110, 685/252, 1264/465, 2721/1001, 25946/9545, 75117/27634, 370143/136168, 1602139/589394, 1084483/398959, 14665106/5394991, 99402293/36568060, 353613854/130087267, 848456353/312129649 & 15710565395/5779594018. Regarding the last one, |15710565395/5779594018 - e| < 10^(-19).

%e The numerators of these rationals are a proper subsequence of A006258 & A119014 and the denominators are a proper subsequence of A006259 & A119015. - _Robert G. Wilson v_, Jun 27 2015

%t z = 16; r[x_, y_] := Module[{a, b, x1 = Min[{x, y}], y1 = Max[{x, y}]}, If[x == y, x, b = NestWhile[#1 + 1 &, 1, ! (a = Ceiling[#1 x1 - 1]) < Ceiling[#1 y1] - 1 &]; (a + 1)/b]]; s[n_] := s[n] = Sum[1/(k - 1)!, {k, 1, n}]; N[Table[s[k], {k, 1, z}]]; t = Table[r[s[n], s[n + 1]], {n, 2, z}]; fd = Denominator[t] (* _Peter J. C. Moses_, Jul 20 2013 *)

%Y Cf. A227631.

%K nonn,frac

%O 1,2

%A _Clark Kimberling_, Jul 30 2013

%E a(16)-a(17) from _Manfred Scheucher_, Jun 23 2015

%E a(18)-a(19) from _Robert G. Wilson v_, Jun 27 2015

%E a(20)-a(27) from _Jon E. Schoenfield_, Jun 27 2015